Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
J Am Chem Soc ; 146(11): 7708-7722, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457782

RESUMO

Developing new antibiotics and delivery strategies is of critical importance for treating infections caused by Gram-negative bacterial pathogens. Hijacking bacterial iron uptake machinery, such as that of the siderophore enterobactin (Ent), represents one promising approach toward these goals. Here, we report a novel Ent-inspired siderophore-antibiotic conjugate (SAC) employing an alternative siderophore moiety as the delivery vector and demonstrate the potency of our SACs harboring the ß-lactam antibiotic ampicillin (Amp) against multiple pathogenic Gram-negative bacterial strains. We establish the ability of N,N',N''-(nitrilotris(ethane-2,1-diyl))tris(2,3-dihydroxybenzamide) (TRENCAM, hereafter TC), a synthetic mimic of Ent, to facilitate drug delivery across the outer membrane (OM) of Gram-negative pathogens. Conjugation of Amp to a new monofunctionalized TC scaffold affords TC-Amp, which displays markedly enhanced antibacterial activity against the gastrointestinal pathogen Salmonella enterica serovar Typhimurium (STm) compared with unmodified Amp. Bacterial uptake, antibiotic susceptibility, and microscopy studies with STm show that the TC moiety facilitates TC-Amp uptake by the OM receptors FepA and IroN and that the Amp warhead inhibits penicillin-binding proteins. Moreover, TC-Amp achieves targeted activity, selectively killing STm in the presence of a commensal lactobacillus. Remarkably, we uncover that TC-Amp and its Ent-based predecessor Ent-Amp achieve enhanced antibacterial activity against diverse Gram-negative ESKAPE pathogens that express Ent uptake machinery, including strains that possess intrinsic ß-lactam resistance. TC-Amp and Ent-Amp exhibit potency comparable to that of the FDA-approved SAC cefiderocol against Gram-negative pathogens. These results demonstrate the effective application of native and appropriately designed nonnative siderophores as vectors for drug delivery across the OM of multiple Gram-negative bacterial pathogens.


Assuntos
Sideróforos , beta-Lactamas , Sideróforos/farmacologia , beta-Lactamas/farmacologia , Lactamas , Antibacterianos/farmacologia , Enterobactina/farmacologia , Enterobactina/metabolismo , Bactérias Gram-Negativas , Ferro
2.
ACS Infect Dis ; 10(4): 1250-1266, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38436588

RESUMO

The growing threat of bacterial infections coupled with the dwindling arsenal of effective antibiotics has heightened the urgency for innovative strategies to combat bacterial pathogens, particularly Gram-negative strains, which pose a significant challenge due to their outer membrane permeability barrier. In this study, we repurpose clinically approved anticancer agents as targeted antibacterials. We report two new siderophore-platinum(IV) conjugates, both of which consist of an oxaliplatin-based Pt(IV) prodrug (oxPt(IV)) conjugated to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron acquisition. We demonstrate that l/d-Ent-oxPt(IV) (l/d-EOP) are selectively delivered into the Escherichia coli cytoplasm, achieving targeted antibacterial activity, causing filamentous morphology, and leading to enhanced Pt uptake by bacterial cells but reduced Pt uptake by human cells. d-EOP exhibits enhanced potency compared to oxaliplatin and l-EOP, primarily attributed to the intrinsic antibacterial activity of its non-native siderophore moiety. To further elucidate the antibacterial activity of Ent-Pt(IV) conjugates, we probed DNA damage caused by l/d-EOP and the previously reported cisplatin-based conjugates l/d-Ent-Pt(IV) (l/d-EP). A comparative analysis of these four conjugates reveals a correlation between antibacterial activity and the ability to induce DNA damage. This work expands the scope of Pt cargos targeted to the cytoplasm of Gram-negative bacteria via Ent conjugation, provides insight into the cellular consequences of Ent-Pt(IV) conjugates in E. coli, and furthers our understanding of the potential of Pt-based therapeutics for antibacterial applications.


Assuntos
Platina , Sideróforos , Humanos , Sideróforos/farmacologia , Platina/farmacologia , Escherichia coli , Oxaliplatina/farmacologia , Antibacterianos/farmacologia , Enterobactina , Dano ao DNA
3.
Eur J Med Chem ; 269: 116339, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537513

RESUMO

The low permeability of the outer membrane of Gram-negative bacteria is a serious obstacle to the development of new antibiotics against them. Conjugation of antibiotic with siderophore based on the "Trojan horse strategy" is a promising strategy to overcome the outer membrane obstacle. In this study, series of antibacterial agents were designed and synthesized by conjugating the 3-hydroxypyridin-4(1H)-one based siderophores with cajaninstilbene acid (CSA) derivative 4 which shows good activity against Gram-positive bacteria by targeting their cell membranes but is ineffective against Gram-negative bacteria. Compared to the inactive parent compound 4, the conjugates 45c or 45d exhibits significant improvement in activity against Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae and especially P. aeruginosa (minimum inhibitory concentrations, MICs = 7.8-31.25 µM). The antibacterial activity of the conjugates is attributed to the CSA derivative moiety, and the action mechanism is by disruption of bacterial cell membranes. Further studies on the uptake mechanisms showed that the bacterial siderophore-dependent iron transport system was involved in the uptake of the conjugates. In addition, the conjugates 45c and 45d showed a lower cytotoxic effects in vivo and in vitro and a positive therapeutic effect in the treatment of C. elegans infected by P. aeruginosa. Overall, our work describes a new class and a promising 3-hydroxypyridin-4(1H)-one-CSA derivative conjugates for further development as antibacterial agents against Gram-negative bacteria.


Assuntos
Antibacterianos , Salicilatos , Sideróforos , Estilbenos , Animais , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Sideróforos/farmacologia , Sideróforos/metabolismo , Caenorhabditis elegans/metabolismo , Bactérias Gram-Negativas , Bactérias/metabolismo , Testes de Sensibilidade Microbiana
4.
Environ Sci Technol ; 58(8): 3974-3984, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306233

RESUMO

In contaminated water and soil, little is known about the role and mechanism of the biometabolic molecule siderophore desferrioxamine-B (DFO) in the biogeochemical cycle of uranium due to complicated coordination and reaction networks. Here, a joint experimental and quantum chemical investigation is carried out to probe the biomineralization of uranyl (UO22+, referred to as U(VI) hereafter) induced by Shewanella putrefaciens (abbreviated as S. putrefaciens) in the presence of DFO and Fe3+ ion. The results show that the production of mineralized solids {hydrogen-uranium mica [H2(UO2)2(PO4)2·8H2O]} via S. putrefaciens binding with UO22+ is inhibited by DFO, which can both chelate preferentially UO22+ to form a U(VI)-DFO complex in solution and seize it from U(VI)-biominerals upon solvation. However, with Fe3+ ion introduced, the strong specificity of DFO binding with Fe3+ causes re-emergence of biomineralization of UO22+ {bassetite [Fe(UO2)2(PO4)2·8(H2O)]} by S. putrefaciens, owing to competitive complexation between Fe3+ and UO22+ for DFO. As DFO possesses three hydroxamic functional groups, it forms hexadentate coordination with Fe3+ and UO22+ ions via these functional groups. The stability of the Fe3+-DFO complex is much higher than that of U(VI)-DFO, resulting in some DFO-released UO22+ to be remobilized by S. putrefaciens. Our finding not only adds to the understanding of the fate of toxic U(VI)-containing substances in the environment and biogeochemical cycles in the future but also suggests the promising potential of utilizing functionalized DFO ligands for uranium processing.


Assuntos
Shewanella putrefaciens , Urânio , Biomineralização , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Shewanella putrefaciens/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , Urânio/química , Compostos de Ferro/química
5.
Nat Microbiol ; 9(3): 631-646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409256

RESUMO

The antibiotic cefiderocol hijacks iron transporters to facilitate its uptake and resists ß-lactamase degradation. While effective, resistance has been detected clinically with unknown mechanisms. Here, using experimental evolution, we identified cefiderocol resistance mutations in Pseudomonas aeruginosa. Resistance was multifactorial in host-mimicking growth media, led to multidrug resistance and paid fitness costs in cefiderocol-free environments. However, kin selection drove some resistant populations to cross-protect susceptible individuals from killing by increasing pyoverdine secretion via a two-component sensor mutation. While pyochelin sensitized P. aeruginosa to cefiderocol killing, pyoverdine and the enterobacteria siderophore enterobactin displaced iron from cefiderocol, preventing uptake by susceptible cells. Among 113 P. aeruginosa intensive care unit clinical isolates, pyoverdine production directly correlated with cefiderocol tolerance, and high pyoverdine producing isolates cross-protected susceptible P. aeruginosa and other Gram-negative bacteria. These in vitro data show that antibiotic cross-protection can occur via degradation-independent mechanisms and siderophores can serve unexpected protective cooperative roles in polymicrobial communities.


Assuntos
Antibacterianos , Sideróforos , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , 60607 , Ferro/metabolismo , Enterobacteriaceae/metabolismo , Pseudomonas aeruginosa/metabolismo
6.
Angew Chem Int Ed Engl ; 63(19): e202402405, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407513

RESUMO

Antibacterial resistance is a major threat for human health. There is a need for new antibacterials to stay ahead of constantly-evolving resistant bacteria. Nucleic acid therapeutics hold promise as powerful antibiotics, but issues with their delivery hamper their applicability. Here, we exploit the siderophore-mediated iron uptake pathway to efficiently transport antisense oligomers into bacteria. We appended a synthetic siderophore to antisense oligomers targeting the essential acpP gene in Escherichia coli. Siderophore-conjugated PNA and PMO antisense oligomers displayed potent antibacterial properties. Conjugates bearing a minimal siderophore consisting of a mono-catechol group showed equally effective. Targeting the lacZ transcript resulted in dose-dependent decreased ß-galactosidase production, demonstrating selective protein downregulation. Applying this concept to Acinetobacter baumannii also showed concentration-dependent growth inhibition. Whole-genome sequencing of resistant mutants and competition experiments with the endogenous siderophore verified selective uptake through the siderophore-mediated iron uptake pathway. Lastly, no toxicity towards mammalian cells was found. Collectively, we demonstrate for the first time that large nucleic acid therapeutics can be efficiently transported into bacteria using synthetic siderophore mimics.


Assuntos
Acinetobacter baumannii , Antibacterianos , Catecóis , Escherichia coli , Sideróforos , Sideróforos/química , Sideróforos/farmacologia , Catecóis/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Testes de Sensibilidade Microbiana , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo
8.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341275

RESUMO

AIMS: The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS: Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS: This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.


Assuntos
Alternaria , Solanum lycopersicum , Solanum , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Solanum/metabolismo , Sideróforos/farmacologia , Produtos Agrícolas/metabolismo , Ferro , Necrose , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
9.
Eur J Med Chem ; 265: 116073, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38169270

RESUMO

Blocking iron uptake and metabolism has been emerging as a promising therapeutic strategy for the development of novel antimicrobial compounds. Like all mycobacteria, M. abscessus (Mab) has evolved several countermeasures to scavenge iron from host carrier proteins, including the production of siderophores, which play a crucial role in these processes. In this study, we solved, for the first time, the crystal structure of Mab-SaS, the first enzyme involved in the biosynthesis of siderophores. Moreover, we screened a small, focused library and identified a compound exhibiting a potent inhibitory effect against Mab-SaS (IC50 ≈ 2 µM). Its binding mode was investigated by means of Induced Fit Docking simulations, performed on the crystal structure presented herein. Furthermore, cytotoxicity data and pharmacokinetic predictions revealed the safety and drug-likeness of this class of compounds. Finally, the crystallographic data were used to optimize the model for future virtual screening campaigns. Taken together, the findings of our study pave the way for the identification of potent Mab-SaS inhibitors, based on both established and unexplored chemotypes.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Salicilatos/farmacologia , Sideróforos/farmacologia , Ferro
10.
Biochem Biophys Res Commun ; 691: 149277, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38029543

RESUMO

The human skin microbiome consists of many species of bacteria, including Staphylococcus aureus and S. epidermidis. Individuals with atopic dermatitis (AD) have an increased relative abundance of S. aureus, which exacerbates the inflammation of AD. Although S. epidermidis, a main component of healthy skin microbiota, inhibits the growth of S. aureus, the balance between S. epidermidis and S. aureus is disrupted in the skin of individuals with AD. In this study, we found that Citrobacter koseri isolated from patients with AD produces substances that inhibit the growth of S. epidermidis. Heat-treated culture supernatant (CS) of C. koseri inhibited the growth of S. epidermidis but not S. aureus. The genome of C. koseri has gene clusters related to siderophores and the heat-treated CS of C. koseri contained a high concentration of siderophores compared with the control medium. The inhibitory activity of C. koseri CS against the growth of S. epidermidis was decreased by the addition of iron, but not copper or zinc. Deferoxamine, an iron-chelating agent, also inhibited the growth of S. epidermidis, but not that of S. aureus. These findings suggest that C. koseri inhibits the growth of S. epidermidis by interfering with its iron utilization.


Assuntos
Citrobacter koseri , Dermatite Atópica , Humanos , Staphylococcus epidermidis , Staphylococcus aureus , Ferro , Sideróforos/farmacologia
11.
J Antibiot (Tokyo) ; 77(1): 4-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950064

RESUMO

Siderophores are low-molecular-mass, high-affinity chelators of Fe3+ ions that are critical for the survival of bacteria in ferric deficient environment. Exogenous siderophores are potential bacteriostat by disrupting the iron-uptake process of pathogens. In our previous work to discover siderophores, strain LS1784 was previously predicted to produce new catecholate-type siderophores by genome analysis but no compounds were obtained. In this work, we reclassified train LS1784 as Kitasatospora sp. LS1784 according to the genome phylogenetic analysis. Then guided by CAS colorimetric assay and molecular network analysis, four catecholate-type siderophores were isolated from the ethyl acetate extract of LS1784 which were coincident with the initial prediction. Notably, compounds 2 and 3 were reported for the first time. Following activity screening, compound 3 showed sufficient anti-Pseudomonas aeruginosa-infection activity in Caenorhabditis elegans infection models, whereas all compounds exhibited no antimicrobial activity. These results indicated that compound 3 can enhance the survival of P. aeruginosa infecting C. elegans by reducing the virulence of P. aeruginosa rather than killing P. aeruginosa, which aligns with our previous findings. Moreover, these findings highlight the effectiveness of comprehensive approaches, including genome mining, CAS (Chromeazurol S) testing, and molecular network (MN) analysis, in identifying potential siderophores, thereby expanding the siderophores arsenal in bacteria for the development of anti-infective drugs.


Assuntos
Infecções por Pseudomonas , Sideróforos , Animais , Caenorhabditis elegans , Ferro , Filogenia , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Sideróforos/farmacologia
12.
Drug Resist Updat ; 72: 101034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134561

RESUMO

Antibacterial drug resistance of gram-negative bacteria (GNB) results in high morbidity and mortality of GNB infection, seriously threaten human health globally. Developing new antibiotics has become the critical need for dealing with drug-resistant bacterial infections. Cefiderocol is an iron carrier cephalosporin that achieves drug accumulation through a unique "Trojan horse" strategy into the bacterial periplasm. It shows high antibacterial activity against multidrug-resistant (MDR) Enterobacteriaceae and MDR non-fermentative bacteria. The application of cefiderocol offers new hope for treating clinical drug-resistant bacterial infections. However, limited clinical data and uncertainties about its resistance mechanisms constrain the choice of its therapeutic use. This review aimed to summarize the clinical applications, drug resistance mechanisms, and co-administration of cefiderocol.


Assuntos
60607 , Infecções por Bactérias Gram-Negativas , Humanos , Sideróforos/farmacologia , Sideróforos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Bactérias Gram-Negativas , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
13.
J Infect Public Health ; 16 Suppl 1: 33-44, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953111

RESUMO

BACKGROUND: Cefiderocol (CFDC) is a novel siderophore-cephalosporin, which usually penetrates the bacteria through the iron-uptake pathways. Data is limited on the factors affecting CFDC activity and methods for overcoming resistance development. Synergistic approaches are needed to tackle antimicrobial resistance. This study aimed to determine CFDC activity on Klebsiella pneumoniae isolates from patients attending a single hospital in the United Arab Emirates (UAE), to explore the effect of ß-lactamases on CFDC activity and to enhance CFDC susceptibility in both iron-depleted and iron-enriched conditions. METHODS: We investigated 238 K. pneumoniae strains from diverse clinical sources. ß-lactamase genes were detected by PCR. Susceptibility to CFDC and 12 comparator antibiotics were tested. Combinations of CFDC with ß-lactamase inhibitors (BLIs) and/or an outer membrane (OM) permeabilizer (polymyxin B nonapeptide) were tested in iron-depleted and iron-enriched conditions. RESULTS: CFDC exhibited efficacy of 97.9%, against multidrug-resistant (MDR), and extensively drug-resistant (XDR) strains, in addition to strains resistant to the last resort drugs such as colistin and tigecycline, including dual carbapenemase-producers (blaNDM and blaOXA-48-like) with MIC ≤ 0.06-8 µg/ml. It was effective in killing strains with single and multiple ß-lactamases; however, it lost activity in iron-enriched conditions. Synergy was achieved with dual combination of CFDC and BLIs, especially avibactam, which caused a significant reduction in MICs even in iron-enriched conditions. A significant reduction was seen with the triple combination including an OM permeabilizer plus avibactam. Killing-kinetic studies proved that the combination therapy caused dose reduction and faster killing by CFDC than the monotherapy. CONCLUSIONS: CFDC was deemed effective against MDR and XDR K. pneumoniae. Synergistic combination of CFDC with BLIs and OM permeabilizers could be effective to treat infections in iron-rich sites, but this should be investigated in vivo.


Assuntos
Klebsiella pneumoniae , Sideróforos , Humanos , Sideróforos/farmacologia , Pacientes Internados , Emirados Árabes Unidos , Cinética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas , beta-Lactamases/genética , Monobactamas/farmacologia , Ferro/farmacologia , Hospitais , Testes de Sensibilidade Microbiana
14.
Eur J Clin Microbiol Infect Dis ; 42(11): 1395-1400, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828413

RESUMO

Cefiderocol (CFDC) is the first-in-class siderophore-cephalosporin. Klebsiella pneumoniae strain that is extremely resistant to CFDC (MIC: 256 µg/ml) was isolated for the first time in the United Arab Emirates from a patient with pneumonia and sepsis. It belonged to sequence-type 14 (ST14), with a novel core genome ST. Resistance was driven by the co-expression of ß-lactamases (blaNDM-1, blaOXA-232 and blaCTX-M-15) and a mutation in catecholate-siderophore receptor, utilized by CFDC to enter the bacterial cell. Synergistic combinations (ß-lactamase inhibitors, aztreonam plus CFDC) re-sensitized the bacteria to CFDC. Although CFDC resistance is multifactorial, the combination with ß-lactamase inhibitors represents a promising approach in resistance reversal for fighting superbugs.


Assuntos
Klebsiella pneumoniae , Sepse , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sideróforos/uso terapêutico , Sideróforos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Sepse/tratamento farmacológico , Genômica
15.
Biomed Khim ; 69(4): 199-218, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705481

RESUMO

The search and creation of innovative antimicrobial drugs, acting against resistant and multiresistant strains of bacteria and fungi, are one of the most important tasks of modern bioorganic chemistry and pharmaceuticals. Since iron is essential for the vital activity of almost all organisms, including mammals and bacteria, the proteins involved in its metabolism can serve as potential targets in the development of new promising antimicrobial agents. Such targets include endogenous mammalian biomolecules, heme oxygenases, siderophores, protein 24p3, as well as bacterial heme oxygenases and siderophores. Other proteins that are responsible for the delivery of iron to cells and its balance between bacteria and the host organism also attract certain particular interest. The review summarizes data on the development of inhibitors and inducers (activators) of heme oxygenases, selective for mammals and bacteria, and considers the characteristic features of their mechanisms of action and structure. Based on the reviewed literature data, it was concluded that the use of hemin, the most powerful hemooxygenase inducer, and its derivatives as potential antimicrobial and antiviral agents, in particular against COVID-19 and other dangerous infections, would be a promising approach. In this case, an important role is attributed to the products of hemin degradation formed by heme oxygenases in vitro and in vivo. Certain attention has been paid to the data on the antimicrobial action of iron-free protoporphyrinates, namely complexes with Co, Ga, Zn, Mn, their advantages and disadvantages compared to hemin. Modification of the well-known antibiotic ceftazidime with a siderophore molecule increased its effectiveness against resistant bacteria.


Assuntos
Anti-Infecciosos , COVID-19 , Animais , Antivirais/farmacologia , Hemina , Sideróforos/farmacologia , Anti-Infecciosos/farmacologia , Oxigenases , Mamíferos
16.
Eur J Med Chem ; 259: 115592, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478559

RESUMO

SbnE is an essential enzyme for staphyloferrin B biosynthesis in Staphylococcus aureus. An earlier study showed that natural product baulamycin A has in vitro inhibitory activity against SbnE and antibacterial potency. A SAR study with analogues of baulamycin A was conducted to identify potent inhibitors of SbnE and/or effective antibiotics against MRSA. The results show that selected analogues, including 11, 18, 21, 24a, 24c, 24m and 24n, exhibit single-digit micromolar inhibitory potencies against SbnE (IC50s = 1.81-8.94 µM) and 11, 24m, 24n possess significant activities against both SbnE (IC50s = 4.12-6.12 µM) and bacteria (MICs = 4-32 µg/mL). Biological investigations revealed that these substances possess potent cell wall disruptive activities and that they inhibit siderophore production in MRSA. Among the selected analogues, 7 has excellent antibiotic activities both gram-positive and -negative bacteria (0.5-4 µg/mL). Moreover, these analogues significantly impede biofilm formation in a concentration-dependent manner. Taken together, the results of the investigation provide valuable insight into the nature of novel baulamycin A analogues that have potential efficacy against MRSA owing to their membrane damaging activity and/or inhibitory efficacy against siderophore production.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Sideróforos/farmacologia , Staphylococcus aureus
17.
PLoS One ; 18(6): e0287191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37315081

RESUMO

Intravenous gallium therapy is a non-antibiotic approach to limit Pseudomonas aeruginosa biofilm proliferation, by outcompeting iron for siderophore binding. Gallium therapy represents a viable therapeutic strategy for cystic fibrosis (CF) patients harbouring mucoid P. aeruginosa biofilm lung infections. Siderophore deficient P. aeruginosa isolates still demonstrate a hindered biofilm proliferation when exposed to gallium but it is currently unknown whether exogenous gallium has any disruptive influence on the exopolysaccharide (EPS), the major mucoid P. aeruginosa CF lung biofilm matrix component. To that end, Density-Functional Theory (DFT) was deployed to assess whether gallium (Ga3+) could be substituted into the mature mucoid EPS scaffold in preference of calcium (Ca2+)-the native EPS cross-linking ion. Removal of the stable, bound native calcium ions offers a large enthalpic barrier to the substitution and the mature EPS fails to accommodate exogenous gallium. This suggests that gallium, perhaps, is utilising a novel, possibly unknown, ferric uptake system to gain entry to siderophore deficient cells.


Assuntos
Fibrose Cística , Gálio , Humanos , Pseudomonas aeruginosa , Cálcio , Sideróforos/farmacologia , Polissacarídeos , Biofilmes , Gálio/farmacologia
18.
Antimicrob Agents Chemother ; 67(5): e0150522, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37195077

RESUMO

Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.


Assuntos
Anti-Infecciosos , Enterobacteriáceas Resistentes a Carbapenêmicos , Enterobacter cloacae , Carbapenêmicos/farmacologia , Sideróforos/farmacologia , Cefalosporinas/farmacologia , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
19.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175772

RESUMO

Burkholderia pyrrocinia JK-SH007 can effectively control poplar canker caused by pathogenic fungi. Its antifungal mechanism remains to be explored. Here, we characterized the functional role of CysB in B. pyrrocinia JK-SH007. This protein was shown to be responsible for the synthesis of cysteine and the siderophore ornibactin, as well as the antifungal activity of B. pyrrocinia JK-SH007. We found that deletion of the cysB gene reduced the antifungal activity and production of the siderophore ornibactin in B. pyrrocinia JK-SH007. However, supplementation with cysteine largely restored these two abilities in the mutant. Further global transcriptome analysis demonstrated that the amino acid metabolic pathway was significantly affected and that some sRNAs were significantly upregulated and targeted the iron-sulfur metabolic pathway by TargetRNA2 prediction. Therefore, we suggest that, in B. pyrrocinia JK-SH007, CysB can regulate the expression of genes related to Fe-S clusters in the iron-sulfur metabolic pathway to affect the antifungal activity of B. pyrrocinia JK-SH007. These findings provide new insights into the various biological functions regulated by CysB in B. pyrrocinia JK-SH007 and the relationship between iron-sulfur metabolic pathways and fungal inhibitory substances. Additionally, they lay the foundation for further investigation of the main antagonistic substances of B. pyrrocinia JK-SH007.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Sideróforos/farmacologia , Sideróforos/metabolismo , Cisteína/metabolismo , Burkholderia/genética , Complexo Burkholderia cepacia/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Proteínas de Bactérias/metabolismo
20.
Eur J Med Chem ; 257: 115454, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37210837

RESUMO

The natural prenylated chalcone isobavachalcone (IBC) shows good antibacterial activity against Gram-positive bacteria but is ineffective against Gram-negative bacteria, most likely due to the outer membrane barrier of Gram-negative bacteria. The Trojan horse strategy has been shown to be an effective strategy to overcome the reduction in the permeability of the outer membrane of Gram-negative bacteria. In this study, eight different 3-hydroxy-pyridin-4(1H)-one-isobavachalcone conjugates were designed and synthesized based on the siderophore Trojan horse strategy. The conjugates exhibited 8- to 32-fold lower minimum inhibitory concentrations (MICs) and 32- to 177-fold lower half-inhibitory concentrations (IC50s) against Pseudomonas aeruginosa PAO1 as well as clinical multidrug-resistant (MDR) strains compared to the parent IBC under iron limitation. Further studies showed that the antibacterial activity of the conjugates was regulated by the bacterial iron uptake pathway under different iron concentration conditions. Studies on the antibacterial mechanism of conjugate 1b showed that it exerts antibacterial activity by disrupting cytoplasmic membrane integrity and inhibiting cell metabolism. Finally, conjugate 1b showed a lower cytotoxic effects on Vero cells than IBC and a positive therapeutic effect in the treatment of bacterial infections caused by Gram-negative bacteria PAO1. Overall, this work demonstrates that IBC can be delivered to Gram-negative bacteria when combined with 3-hydroxy-pyridin-4(1H)-ones as siderophores and provides a scientific basis for the development of effective antibacterial agents against Gram-negative bacteria.


Assuntos
Chalconas , Sideróforos , Animais , Chlorocebus aethiops , Sideróforos/farmacologia , Sideróforos/metabolismo , Chalconas/farmacologia , Chalconas/metabolismo , Pseudomonas aeruginosa , Células Vero , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ferro/metabolismo , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...